MOOC Course- Regression Analysis and Forecasting - January 2017

Assignment 1

[1] Which of the following transformations make the model $y=\frac{x}{\beta_{0} x-\beta_{1}}$ linear in β_{0} and β_{1} ?
A. $y^{*}=y^{-2}, x^{*}=x^{-2}$
B. $y^{*}=y^{-1}, x^{*}=x^{-1}$
C. $y^{*}=y^{2}, x^{*}=x^{2}$
D. $y^{*}=y^{-1 / 2}, x^{*}=x^{-1 / 2}$
[2] Which of the statements are correct about the model $y=\beta_{0} \exp \left(\beta_{1} x\right)$?

Statement 1: Model is nonlinear.
Statement 2: Model is linear in the parameters $\ln \beta_{0}$ and β_{1}.
Statement 3 : Model can be linearized using the transformed variables $y^{*}=\ln y$ and $x^{*}=x$.
Statement 4: Model is linear in the parameters $\ln \beta_{0}$ and $\exp \left(\beta_{1}\right)$.
A. Statements 1,2 and 3 are correct.
B. Statements 1, 3 and 4 are correct.
C. Statements 2 and 3 are correct.
D. All the statements $1,2,3$ and 4 are correct.
[3] Consider the simple linear regression model $y=\beta_{0}+\beta_{1} x+\epsilon$ where β_{0} is known. The ordinary least squares estimator of β_{1} based on the observations $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ is
A. $\beta_{0} \frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
B. $\frac{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}\right) x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$.
C. $\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$.
D. $\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}-\beta_{0}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
[4] Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1,2 \ldots, n$ where ϵ_{i} 's are identically and independently distributed with mean 0 , variance σ^{2} and do not necessarily follow the normal distribution. Let $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$. The covariance between the least squares estimators of β_{0} and β_{1} is
A. $-\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
B. $-\frac{\bar{x} \sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
C. Zero.
D. $\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sigma^{2}}{\bar{x}^{2}}$.
[5] Consider a simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{i}^{2}, i=$ $1,2, \ldots, n$, where $\sigma_{i}^{2}, i=1,2, \ldots, n$ are assumed to be is known. An estimator of β_{1} based on the minimization of $\sum_{i=1}^{n} \epsilon_{i}^{2}$ in this case is
A. $\frac{\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sigma_{i}^{2}}\right)}{\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{i}^{2}}\right)}$
B. $\frac{\sum_{i=1}^{n} \sigma_{i}^{2}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n} \sigma_{i}^{2}\left(x_{i}-\bar{x}\right)^{2}}$.
C. $\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
D. $\frac{\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sigma_{i}}\right)}{\sum_{i=1}^{n}\left(\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{i}}\right)}$

Note: Questions [6] and [7] are based on the following data:
The weight and systolic blood pressure of 6 randomly selected persons are obtained as follows:

Observation number	1	2	3	4	5	6
Weight	165	167	180	155	212	175
Blood pressure	130	133	150	128	151	146

Considering the weight to be explanatory variable (x) and the blood pressure to be study variable (y), the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \epsilon_{i} \sim N\left(0, \sigma^{2}\right), i=1,2, \ldots, 6$ is fitted.
[6] The ordinary least squares estimates of β_{0}, β_{1} and σ^{2} are obtained. Which of the following represents the correct results?
A. $\hat{\beta}_{0}=62.9, \hat{\beta}_{1}=0.44, \hat{\sigma}^{2}=176$
B. $\hat{\beta}_{0}=26.5, \hat{\beta}_{1}=0.15, \hat{\sigma}^{2}=176$
C. $\hat{\beta}_{0}=62.9, \hat{\beta}_{1}=0.44, \hat{\sigma}^{2}=44$
D. $\hat{\beta}_{0}=26.5, \hat{\beta}_{1}=0.15, \hat{\sigma}^{2}=44$
[7] The standard errors (se) of ordinary least squares estimates of β_{0} and β_{1} are obtained. Which of the following represents the correct results?
A. $\operatorname{se}\left(\hat{\beta}_{0}\right)=0.15, \operatorname{se}\left(\hat{\beta}_{1}\right)=26.5$
B. $\operatorname{se}\left(\hat{\beta}_{0}\right)=176, \operatorname{se}\left(\hat{\beta}_{1}\right)=0.44$
C. $\operatorname{se}\left(\hat{\beta}_{0}\right)=0.44, \operatorname{se}\left(\hat{\beta}_{1}\right)=176$
D. $\operatorname{se}\left(\hat{\beta_{0}}\right)=26.5, \operatorname{se}\left(\hat{\beta}_{1}\right)=0.15$
[8] Which of the following test statistic is used to test $H_{0}: \beta_{0}=0$ in the model $y=\beta_{0}+\beta_{1} x+\epsilon$, $\epsilon \sim N\left(0, \sigma^{2}\right)$ for a sample of size 60 and σ^{2} is unknown?
A. Z-statistic.
B. t-statistic.
C. Anyone of Z or t-statistic.
D. χ^{2}-statistic.
[9] Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1,2, \ldots 20$ where ϵ_{i} 's are identically and independently distributed following $N\left(0, \sigma^{2}\right)$ where σ^{2} is unknown. The following outcome for testing $H_{0}: \beta_{0}=6$ is obtained at 5% level of significance. The value of t-statistic is 2.78 and p-value is 0.08 . Which of the following decision is correct?
A. Reject H_{0}.
B. Accept H_{0}.
C. No decision can be concluded.
D. Data is inadequate.
[10] In the simple linear regression model, $y_{i}=\beta x_{i}+\epsilon_{i}, \epsilon_{i} \sim N\left(0, \sigma^{2}\right), i=1,2, \ldots, n$, an unbiased estimator of σ^{2} is
A. $\frac{1}{(n-2) \sum_{i=1}^{n} x_{i}^{2}}\left[\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}\right]$
B. $\frac{1}{(n-1) \sum_{i=1}^{n} x_{i}^{2}}\left[\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}\right]$
C. $\frac{1}{n \sum_{i=1}^{n} x_{i}^{2}}\left[\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}\right]$
D. $\frac{1}{(n+1)) \sum_{i=1}^{n} x_{i}^{2}}\left[\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}\right]$

Solution to Assignment 1

Answer of Question 1 - B

Answer of Question 2 - A

Answer of Question 3 - B

Answer of Question 4 - B

Answer of Question 5 - C

Answer of Question 6 - A

Answer of Question 7 - A

Answer of Question 8 - C

Answer of Question 9 - B

Answer of Question 10 - B

