MOOC Course- Regression Analysis and Forecasting - January 2017 Assignment 1

[1] Which of the following transformations make the model $y = \frac{x}{\beta_0 x - \beta_1}$ linear in β_0 and β_1 ?

A. $y^* = y^{-2}, x^* = x^{-2}$ B. $y^* = y^{-1}, x^* = x^{-1}$ C. $y^* = y^2, x^* = x^2$ D. $y^* = y^{-1/2}, x^* = x^{-1/2}$

[2] Which of the statements are correct about the model $y = \beta_0 \exp(\beta_1 x)$?

Statement 1 : Model is nonlinear. Statement 2 : Model is linear in the parameters $\ln \beta_0$ and β_1 . Statement 3 : Model can be linearized using the transformed variables $y^* = \ln y$ and $x^* = x$. Statement 4 : Model is linear in the parameters $\ln \beta_0$ and $\exp(\beta_1)$.

- A. Statements 1, 2 and 3 are correct.
- B. Statements 1, 3 and 4 are correct.
- C. Statements 2 and 3 are correct.
- D. All the statements 1, 2, 3 and 4 are correct.

[3] Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$ where β_0 is known. The ordinary least squares estimator of β_1 based on the observations $(x_i, y_i), i = 1, 2, ..., n$ is

A.
$$\beta_0 \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

B.
$$\frac{\sum_{i=1}^{n} (y_i - \beta_0) x_i}{\sum_{i=1}^{n} x_i^2}.$$

C.
$$\frac{\sum_{i=1}^{n} (y_i - \bar{y}) x_i}{\sum_{i=1}^{n} x_i^2}.$$

D.
$$\frac{\sum_{i=1}^{n} (y_i - \bar{y} - \beta_0)(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

[4] Consider the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., n where ϵ_i 's are identically and independently distributed with mean 0, variance σ^2 and do not necessarily follow the normal distribution. Let $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$. The covariance between the least squares estimators of β_0 and β_1 is

A.
$$-\frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

B. $-\frac{\bar{x}\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$
C. Zero.
D. $\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma^2}{\bar{x}^2}$.

[5] Consider a simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma_i^2$, i = 1, 2, ..., n, where σ_i^2 , i = 1, 2, ..., n are assumed to be is known. An estimator of β_1 based on the minimization of $\sum_{i=1}^{n} \epsilon_i^2$ in this case is

A.
$$\frac{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_i^2}\right)}{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})^2}{\sigma_i^2}\right)}$$

B.
$$\frac{\sum_{i=1}^{n} \sigma_i^2(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} \sigma_i^2(x_i - \bar{x})^2}.$$

C.
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

D.
$$\frac{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_i}\right)}{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})^2}{\sigma_i}\right)}$$

Note: Questions [6] and [7] are based on the following data:

The weight and systolic blood pressure of 6 randomly selected persons are obtained as follows:

Observation number	1	2	3	4	5	6
Weight	165	167	180	155	212	175
Blood pressure	130	133	150	128	151	146

Considering the weight to be explanatory variable (x) and the blood pressure to be study variable (y), the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$, i = 1, 2, ..., 6 is fitted.

[6] The ordinary least squares estimates of β_0 , β_1 and σ^2 are obtained. Which of the following represents the correct results?

A. $\hat{\beta}_0 = 62.9$, $\hat{\beta}_1 = 0.44$, $\hat{\sigma}^2 = 176$ B. $\hat{\beta}_0 = 26.5$, $\hat{\beta}_1 = 0.15$, $\hat{\sigma}^2 = 176$ C. $\hat{\beta}_0 = 62.9$, $\hat{\beta}_1 = 0.44$, $\hat{\sigma}^2 = 44$ D. $\hat{\beta}_0 = 26.5$, $\hat{\beta}_1 = 0.15$, $\hat{\sigma}^2 = 44$

[7] The standard errors (se) of ordinary least squares estimates of β_0 and β_1 are obtained. Which of the following represents the correct results?

A. $se(\hat{\beta}_0) = 0.15$, $se(\hat{\beta}_1) = 26.5$ B. $se(\hat{\beta}_0) = 176$, $se(\hat{\beta}_1) = 0.44$ C. $se(\hat{\beta}_0) = 0.44$, $se(\hat{\beta}_1) = 176$ D. $se(\hat{\beta}_0) = 26.5$, $se(\hat{\beta}_1) = 0.15$ [8] Which of the following test statistic is used to test H_0 : $\beta_0 = 0$ in the model $y = \beta_0 + \beta_1 x + \epsilon$, $\epsilon \sim N(0, \sigma^2)$ for a sample of size 60 and σ^2 is unknown?

- A. Z-statistic.
- B. *t*-statistic.
- C. Anyone of Z or t-statistic.
- D. χ^2 -statistic.

[9] Consider the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ... 20 where ϵ_i 's are identically and independently distributed following $N(0, \sigma^2)$ where σ^2 is unknown. The following outcome for testing H_0 : $\beta_0 = 6$ is obtained at 5% level of significance. The value of *t*-statistic is 2.78 and *p*-value is 0.08. Which of the following decision is correct?

- A. Reject H_0 .
- B. Accept H_0 .
- C. No decision can be concluded.
- D. Data is inadequate.

[10] In the simple linear regression model, $y_i = \beta x_i + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$, i = 1, 2, ..., n, an unbiased estimator of σ^2 is

A.
$$\frac{1}{(n-2)\sum_{i=1}^{n} x_i^2} \left[\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} x_i y_i)^2 \right]$$

B.
$$\frac{1}{(n-1)\sum_{i=1}^{n} x_i^2} \left[\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} x_i y_i)^2 \right]$$

C.
$$\frac{1}{n \sum_{i=1}^{n} x_i^2} \left[\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} x_i y_i)^2 \right]$$

D.
$$\frac{1}{(n+1)\sum_{i=1}^{n} x_i^2} \left[\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} x_i y_i)^2 \right]$$

Solution to Assignment 1

Answer of Question 1 - B

Answer of Question 2 - A

Answer of Question 3 - B

Answer of Question 4 - B

Answer of Question 5 - C

Answer of Question 6 – A

Answer of Question 7 – A

Answer of Question 8 – C

Answer of Question 9 - B

Answer of Question 10 - B